The quality of survey questions

Cinzia Meraviglia
University of Eastern Piedmont, Italy
Department of Sociology, KTU
14th March 2013

Overview

1. Measurement error, from Saris and Gallhofer (2007) and the work of RECSM (http://www.upf.edu/survey/)
 - Validity, reliability, quality of questions and method effect
 - Why to correct for systematic error, with some examples
2. How to correct for systematic error using SQP 2.0 (www.sqp.nl)
 - An example from ISSP 2009 UK

Questions and answers

- A questionnaire is formed by a number of questions, which are pre-defined as for both the question wording and the response options
- Good questions (and answers) bring quality data, bad questions (and answers) bring poor data
- Can we always trust the data we get?
 - Are they free from error?
 - More specifically, are they free from systematic measurement error?
Types of measurement error

- Imagine we want to measure attitudes towards income inequality using an A/D (agree/disagree) item like this:
 - Please show how much you agree or disagree with this statement: “The government should spend less on benefits for the poor”
 - Answers: 1 strongly agree/ 2 agree/ 3 neither agree nor disagree/ 4 disagree/ 5 strongly disagree/ 8 can’t choose
- Random error: e.g. a R chooses 2 instead of 1, or 3 instead of 4
- Systematic error: e.g. the A/D response scale biases the “true” score of Rs on the measured trait (= the opinion on the government duties towards the poor) by eliciting a higher level of agreement
- Note that:
 - All variables are always affected by measurement error.
 - We can (relatively safely) disregard random error, but we have to deal with systematic error, because it affects the magnitude of the estimated relationship between variables (either by lowering or increasing it).

Systematic error

- It is produced in this process:

A measurement model
(Saris and Gallhofer 2007)

Concept (Income inequality) → f
Indicator true score (true score A/D item) → t
Indicator observed score (obs score A/D item) → y
Random error e
Systematic error (Method effect) → B
Validity

- \(v \): refers to the degree in which our indicator (\(t \)) is related to the concept of interest (\(f \))
- Example:
 - Concept = attitude towards income inequality
 - Valid indicator = agree/disagree that the government should spend less for the poor (93% valid)
 - Non-valid indicator = R's shoes size (0% valid)

![Diagram showing shoe size and A/D item relationship]

Example:

- Concept = attitude towards income inequality
- Valid indicator = agree/disagree that the government should spend less for the poor (93% valid)
- Non-valid indicator = R's shoes size (0% valid)

Reliability

- \(r \): refers to the degree in which the observed indicator (\(y \)) is close to the true indicator (\(t \))
- Reliability is influenced by many features of the question/answer:
 - Number of response categories (eg. 5, 7, 11)
 - Labelling of categories (full/partial/none)
 - Ordering of categories (from higher to lower, or vice versa)
 - Position of the question in the questionnaire
 - ...

A measurement model with \(v \) and \(r \)
(adapted from Saris and Gallhofer 2007)

Income inequality	\(f \)		
True score A/D item	\(t \)	\(m \)	\(u \)
observed A/D item	\(y \)		
Random error	\(e \)		

Systematic error (Method effect)

Method effect:

\[m^2 = 1 - v^2 \]

Total quality:

\[q^2 = v^2 \times r^2 \]
A model for 2 concepts and 1 method

(Saris and Gallhofer 2007, 187)

\[f_1 \rightarrow p(f_1,f_2) \rightarrow f_2 \]

\[y_{ij} = v_{ij} + e_{ij} \]

\[t_{ij} = r_{ij} y_{ij} \]

\[r_{ij} = \text{reliability coefficient} \]

\[y_{ij} = \text{observed variable} \]

\[e_{ij} = \text{random error in variable } y_{ij} \]

Correlation between obs. variables

(Saris and Gallhofer 2007, 188)

\[\rho(f_1,f_2) = \text{correlation between the variables of interest} \]

\[v_{ij} = \text{validity coefficient} \]

\[M_j = \text{method factor for both variables} \]

\[m_{ij} = \text{method effect on variable } i \]

\[t_i = \text{true score} \]

\[r_i = \text{reliability coefficient} \]

\[y_i = \text{observed variable} \]

\[e_i = \text{random error in variable } y_i \]

Why to correct for systematic error

- Correlations between variables may be due to:
 - Substantive relationships among them, or
 - A non-substantive, method-driven effect
 - Usually, to a combination of the above
- What if we give substantive meaning to a correlation that has none?
- An example from Saris and Gallhofer (2007, ch. 14) on political efficacy (let’s say, concept 0), which is formed by:
 - Concept 1: subjective competence (3 items, “Subj”)
 - Concept 2: perceived system responsiveness (2 items, “Res”)

Correlation between obs indicators equals the actual correlation between concepts \(p(f_1,f_2) \) weighted by \(v_v \) and \(r_v \), increased/decreased by the method effects weighted by \(r_v \):

\[\rho(y_1,y_2) = t_{ij} v_{ij} \rho(f_1,f_2) v_{ij} r_{ij} + r_{ij} M_j M_i r_{ij} r_{ij} \]
Political efficacy

1. Subjective competence:
 - Subj1: “Sometimes politics and government seem so complicated that I can’t really understand what is going on”
 - Subj2: “I think I can take an active role in a group that is focused on political issues”
 - Subj3: “I understand and judge important political questions very well”

2. Perceived system responsiveness:
 - Res1: “Politicians do not care much about what people like me think”
 - Res2: “Politicians are only interested in people’s votes but not in their opinions”

Answers = 5 points A/D scale

Correlations

<table>
<thead>
<tr>
<th></th>
<th>Subj1</th>
<th>Subj2</th>
<th>Subj3</th>
<th>Res1</th>
<th>Res2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subj1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subj2</td>
<td>-0.35</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subj3</td>
<td>-0.52</td>
<td>0.43</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Res1</td>
<td>0.16</td>
<td>-0.13</td>
<td>-0.13</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Res2</td>
<td>0.12</td>
<td>-0.18</td>
<td>-0.13</td>
<td>-0.68</td>
<td>1.00</td>
</tr>
</tbody>
</table>

About the correlation matrix

- The “subj” variables seem to be correlated more with one another than with the “res” variables.
- We suppose this is because each set of variables measures a different concept:
 - “Subj” variables → Subjective competence
 - “Res” variables → Perceived responsiveness
A perfectly meaningful model

Subjective competence

Perceived responsiveness

Subj1 Subj2 Subj3

Res1 Res2

e1 e2 e3 e4 e5

.65 -.53 -.79 .82 .82

Meraviglia - KTU 2013

Conclusion 1

After estimating a factor model, we see that our hypothesis is met:
- The “subj” variables correlate to a concept, the “res” variables correlate to the other
- The correlation between the two concepts is .24, meaning that knowing something on the first set of variables tells us something about the other two, and vice versa
- The fact that the two concepts are correlated confirms the hypothesis that they are conceptual dimensions of political efficacy

A more accurate model

Subj comp. Perc. resp.

F1 subj1 F2 subj2 F3 subj3

F4 res1 F5 res2

T1 T2 T3

u1 u2 u3

A/D method factor

Meraviglia - KTU 2013
Conclusion 2 (the right one)

- The correlation between the observed variables is due to a non-substantive effect, i.e., the method effect of the A/D scale.
- The two concepts are NOT correlated: the method effect accounts for all the correlation between them (see first model).
- Were we to rely on the meaningful but not accurate model, we would draw the wrong conclusion about these two concepts being conceptual dimensions of the political efficacy.

How to correct for systematic error

1. Structural equation modelling with multiple indicators
 - Requires knowledge of the theory, the use of Lisrel, and collection of suitable data.
 - Same.
3. SQP 2.0 (Oberski 2011)
 - Online, free of charge, simple, effective, useful!
 - Requires coding of questions according to 60 criteria (see Saris and Gallhofer 2007, chapter 13).
 - Allows to correct observed correlations for systematic measurement error due to method effects, with a bit of elementary algebra.

SQP 2.0

- www.sqp.nl, see Oberski, Gruner and Saris (2011).
- Its data basis comes from the MTMM experiments run in the ESS 1-3 + questions studied in the past (3000 questions in total).
- Many languages: English (IR, UK, USA), German (A, CH, D), Dutch (B, NL), French (F, L), Danish, Finnish, Portuguese, Norwegian, Turkey, Polish, Greek, Estonian, Italian, Czech, Spanish, Slovak, Slovenian, Ukrainian.
When to use it

Two main cases:

1. **Data analysis**: to correct the observed correlations for systematic error
 - Either in the case of ESS questions,
 - Or in the case of questions of your own survey

2. **Research design**: to design a new questionnaire and to know which wording/answer options bring the highest quality, and which improvements can be done, again:
 - Either in the case of ESS questions,
 - Or in the case of questions in your own survey

Example (ISSP 2009 Social Inequality, GB)

- **See questionnaire**

- **Research question**:
 - How the opinion on the role of the government concerning income inequality affects the opinion on taxation for those with high incomes?

- **Concepts and indicators**:
 - **Taxation**: Q7 "tax"
 - **Role of government**: Q6a “reduce”, Q6b “decent”, Q6c “poor”

Model and correlations without systematic error

<table>
<thead>
<tr>
<th></th>
<th>reduce</th>
<th>decent</th>
<th>poor</th>
<th>tax</th>
</tr>
</thead>
<tbody>
<tr>
<td>reduce</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>decent</td>
<td>0.38</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>poor</td>
<td>-0.17</td>
<td>-0.401</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>tax</td>
<td>0.34</td>
<td>0.171</td>
<td>-0.085</td>
<td>1</td>
</tr>
</tbody>
</table>
Recall that the correlation between obs. variables is:

\[\rho(y_1, y_2) = r_{1j} v_{1j} \rho(f_1, f_2) v_{2j} r_{2j} + r_{1j} m_{1j} m_{2j} r_{2j} \]

We get:
- \(\rho(y_1, y_2) \) from the data
- \(r, v \) and \(m \) coefficients from SQP

Then we can calculate \(\rho(f_1, f_2) \), which is what we are interested into.

Let’s go to .SQP.nl and see the coded questions

- www.sqp.nl
 - See Oberski, Gruner and Saris (2011) for reference on SQP 2.0; Saris and Gallhofer (2007) use an earlier version of SQP.
- The 4 items have been coded according to the 60 characteristics
 - See Saris and Gallhofer (2007), ch. 12 par. 2
- We can get the predicted coefficients and put them in a table (see slide 27)

Example: the “reduce” item
The SQP output for the 4 items

<table>
<thead>
<tr>
<th></th>
<th>reduce</th>
<th>decent</th>
<th>poor</th>
<th>tax</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r^2)</td>
<td>0.689</td>
<td>0.690</td>
<td>0.689</td>
<td>0.609</td>
</tr>
<tr>
<td>(\nu^2)</td>
<td>0.933</td>
<td>0.936</td>
<td>0.934</td>
<td>0.913</td>
</tr>
<tr>
<td>(q^2)</td>
<td>0.643</td>
<td>0.646</td>
<td>0.644</td>
<td>0.556</td>
</tr>
<tr>
<td>CMVi</td>
<td>0.046</td>
<td>0.044</td>
<td>0.045</td>
<td>0.053</td>
</tr>
</tbody>
</table>

Let’s correct for systematic error

- Now that we have the validity and reliability coefficients, we can use them for correcting the observed correlations for systematic measurement error.
- We will then compare the observed and the corrected correlations in order to:
 - Assess how the method effect influences the coefficients.
 - Understand how bad we can go if we draw our conclusions not correcting our observed correlations.

Recall that…

- CMV = common method variance = the % of the variance of the obs variables explained by the method effect = \(\frac{r_{ij}^2 m_i m_j}{r_{ij}^2} \).
- Quality = \(q^2 = r^2 \bullet \nu^2 \).
- From this equation:
 \[\rho(y_j, y_j) = \frac{\rho(f_{it}, f_{it}) \nu_{ij}^2 \rho(f_{it}, f_{it}) m_{ij} m_{ij}}{\rho(f_{it}, f_{it}) \nu_{ij}^2 + \rho(f_{it}, f_{it}) m_{ij} m_{ij}} \]
- With a bit of algebra we get:
 \[\rho(f_{it}, f_{it}) = \frac{\rho(y_j, y_j) - CMV_{ij}}{\nu_{ij}^2} \]
The reduce-decent correlation

- Using the last equation, we calculate the actual correlation between the concepts:
 \[\rho(f_1, f_2) - \rho(y_1, y_2) = \frac{38 - 0.45}{\sqrt{.520}} \]

- Then we see that the observed correlation is deflated by measurement error:
 \[\rho(y_1, y_2) = 0.38 \]
 \[\rho(f_1, f_2) = 0.52 \]
 \[\rho(f_1, f_2) = 0.646 \]

Observed vs corrected correlations

- Measurement error deflates all correlations
- The "poor" item is severely affected by systematic error
- Conclusions based on the obs correlations would be biased!

Our model

- Blue coefficients = observed correlations
- Red coefficients = corrected correlations
Conclusions

- Measurement error is always there
- It affects our measures of the relationships between variables, even the simplest ones (eg. correlation coefficients)
- There is a simple and effective way to correct for measurement error, ie. using coefficients predicted by SQP
- Let’s use it!

References